## Geogebra-Lesson 4

Dis appearing objects and inputs

Autfor: Linda Fafiberg-S tojanovska
Algorit fim: Manuel $S$ ada, $S$ teven Lapinski
With thanks to Robert Fant

Produced with: Camtasia Studio
math247.jot.com

Key Concepts from GeoGebra

- Already discussed:

- Inputs
- Making objects appear and disappear


## Key Concepts from Mathematics

- The sign function is a coolfunction that jumps between its values. This makes it a good function for something that we want to suddenly appear.
about Polygons
- General: $\mathcal{A}$ (convex) polygon with $n$ vertices can be divided into $n-2$ triangles and so the inside angles add up to $(n-2) \times 180^{\circ}$.
- Specific: $\mathcal{A}$ quadrilateralcan be split into 2 triangles and so the inside angles add up to $2 \times 180^{\circ}=360^{\circ}$.

Quadrilateral


## Script-o-matic

1. Understanding the activity
a. Make an arbitrary quadrilateral-that is, a quadrilateral where all four vertices are movable (free objects - Glue points in Geogebra)
2. Make a slider that-as the student moves it from left to right a line is drawn from vertex $\mathcal{A}$ to the opposite vertex $C$.
c. When the line gets to $C$ (slider reaches right limit), the corresponding two triangles $\mathcal{A C B}$ and $\mathcal{A C D}$ appear.
d. The student "Knows" that a triangle has inside angles that add to $180^{\circ}$.
e. He "sees" that that the angles of the triangles add up to the angles of the quadrilate ral and so
$f$. He "understands" that the inside angles of a quadrilate ral always add to $360^{\circ}$.
3. Getgoing with Geogebra
a. OpenGeoGebra
4. We don't want to see alot of decimals
i. Click Options $->$ Decimal places $->0$
ii. Doing this just fides the decimals. They are still there - that is, this is different than "snap to grid" where only points with whole number coordinates are allowed (see Lesson 6).
c. Open the Alge bra Window
i. Click View - > Alge bra Window
ii. The Alge bra window will appe ar at left.
d. Openthe Input Field
i. Click View $\rightarrow$ Input Field
ii. The Input field will appear at 6ottom.
5. Draw arbitrary quadrilateral
a. Draw 4 points - click on $\bullet^{\text {A }}$ and thenclickin the drawing space 4 times the points $\mathcal{A}, \mathcal{B}, \mathcal{C}$ and $\mathcal{D}$ will be drawn.
6. Draw 4 line segments - click on and thenclick on $\mathcal{A}$ and then $\mathcal{B}$, then (again) on $\mathcal{B}$ and then $\mathcal{C}$, again on $C$ and then $\mathcal{D}$, again on $\mathcal{D}$ and then $C$.
c. Move the labels of the points - not shown on screencast
i. Select the move tool: 4
ii. Click and drag the point labels $\mathcal{A}, \mathcal{B}, \mathcal{C}$ and $\mathcal{D}$ as desired.
d. Remove labe ls from segments - not sfown on screencast
i. Rigft-clickoneach segment and thende-select "S fow Label"
ii. You fiave:

7. Understand that the moving point $\mathcal{G}$ is on the line $\mathcal{A C}$ that will divide the quadrilate ral into two triangles.
8. Draw a slider from 0 to 1
a. Select the slider tool:

i. Click on the drawing pad where you want the slider to go.
ii. Change the min: 0.001 , the max: 1 and the increment: 0.001

iii. Click on Apply.
iv. If you want to move the slider, first select the move tooland thenclick and drag it to another position.
v. Click and drag the slider to a middle position.
9. Input the value of the point $\mathcal{G}$
a. In the input field type: $\mathcal{G}=\mathcal{A}+e^{*}(\mathcal{C}-\mathcal{A})$
i. You can use a blank or a star for multiplication!
ii. $\mathcal{N}$ otice that $\mathcal{A}, \mathcal{C}$ and $\mathcal{G}$ are all points (with an $x$ - and $y$-coordinate) and $e$ is a number (between 0 and 1) that multiplies both coordinates of the point $(\mathcal{C}-\mathcal{A})$.
iii. When $e=0$, we fiave $\mathcal{G}=\mathcal{A}$ and when $e=1$, we five $\mathcal{G}=C$.
10. Hit Enter.

Geogebra will complain if yougive it mixed up trings sucf as a point and a number: $\mathcal{G}=\mathcal{A}+e$

7. Make a line segment from $\mathcal{A}$ to $\mathcal{G}$
a. Select the segment tool: $\square$ and then click on $\mathcal{A}$ and then on $\mathcal{G}$.
6. Right-click on the segment and select Properties.
i. De-select Show Label.
ii. Click and drag the thickness to 3.
iii. Click on the color patch and choose red and click $O \mathcal{K}$.

8. Make the first triangle
a. Click on the polygon tool

6. Click on $\mathcal{B}$, then on $\mathcal{A}$ and $\mathcal{G}$ and again on $\mathcal{B}$.
i. The polygon makes 4 objects (number of vertices +1 ) -
the polygon $P$ and the three line segments: $a_{1}, b_{1}$ and $g$.
ii. Don't bother to fide the labels now!!
9. Define the appearing/dissappearing variable: ee
a. Understand the sign function: $\operatorname{sgn}(x)$
i. $\quad \operatorname{sgn}(x)= \begin{cases}1 & x>0 \\ 0 & x=0 \\ -1 & x<0\end{cases}$
ii. The ide $a$ is that this function jumps between its values!
10. In the input field type: ee=1-sgn(1-e)
a. When $0 \lll 1,(1-e)>0$ and so $\operatorname{sgn}(1-e)=1$ and $e e=0$.
6. The moment $e=1$ - and this is when the point $G$ is $C$ -

$$
(1-e)=0 \text { and so } \operatorname{sgn}(1-e)=0 \text { and } e e=1 \text {. }
$$

11. Fix the polygon to only appear when $\mathcal{G}$ is $\mathcal{C}$.
a. Rigft-click on $P$ in the $\operatorname{Alge}$ bra Window and select Redefine.
12. In the input field, in front of $\mathcal{B}, \mathcal{A}$ and $\mathcal{G}$, type in ee *

c. Click on Apply.
i. $\mathcal{N}$ otice that the three line sides fave been renamed: $g$, find $i$.
13. Input the other polygon
a. Copy the formula from $\mathcal{P}$
i. Rigft-click on $P$ in the $\operatorname{Alge}$ bra Window and select Redefine.
ii. The text is marked so just press $\operatorname{Ctr} \mathcal{l}+\mathcal{C}$ (to copy formula).
iii. Click on Cancel.
iv. Click down in the Input field and press $\operatorname{Ctrl}+\mathcal{V}$ (to paste formula).
v. Replace $P$ with $Q$ and $\mathcal{B}$ with $\mathcal{D}$
vi. Hit Enter (or click on Apply).
14. We now have two dissappearing and appearing triangles. Click on the move tool and test this by moving the slider back and forth.
15. Fix the properties on the polygons
a. Now, fide the labels on all 6 objects: $g, f, i$ and $j, \mathcal{K}, \mathcal{l}$.
i. Right-click on the objects in the Algebra window (this avoids having to choose between two overlapping objects!) and de-select Show Label.
16. Change the colors of the polygons
i. Right-clickin each of the polygons, select properties and click on the color patch, choose a new color patch and click $O$ K and then Apply.
17. Final fixes and Save!
a. Hide the point $\mathcal{G}$.
18. Change the properties on the slidere: fide the label, make the color red and the line style dashed.
c. You are done - save your file!
