Geogebra-Lesson 6

> Ulsing Geogebra-Vectors
> Grids, Axes and the Drawing Pad

Author: Linda Faflberg-S tojanovska
Wit反 thanks to Robert Fant and fis students

Mathcast produced with: Camtasia Studio
www.mathcasts.org
math247.jot.com

Key Concepts from Geogebra

1. View the coordinate axes: View->AXes.
2. Snap-to-grid points: Options $->$ Point Capturing $->$ On (Grid). .
3. Vectors
4. Changing the axes: Options \rightarrow Drawing Pad.
5. Matrix notation with Latex.
6. Geogebra function: $\chi(\mathcal{A})$ and Late x.

Key Concepts from Mathematics

1. A position vector or radius vector is a vector that starts at the origin O so it is determined by the coordinates of its
 endpoint.
For example: Let \vec{u} be a position vector with endpoint $\mathcal{A}(3,4)$.
Then $\vec{u}=\overrightarrow{O A}$ and we can write $\vec{u}=3 \vec{i}+4 \vec{j}$ or in matrix form as: $\vec{u}=\binom{3}{4}$.
2. Let \vec{u} and \vec{v} be position vectors. We want to find the resultant or sum vector $\vec{w}=\vec{u}+\vec{v}$. It will also be a position vector:
For example, in our ggb file : $\vec{w}=\vec{u}+\vec{v}=\binom{3}{4}+\binom{7}{3}=\binom{3+7}{4+3}=\binom{10}{7}$.
3. To draw the resultant \vec{w}, we first draw the vectors \vec{u} and \vec{v}. We then draw the corresponding parallelogram using the techniques of lesson 1 . The diagonal of this paralle logram is the resultant.

Script-o-matic

1. Turn on the axes:click on View->Axes

The unit will be 1 on both the x and y axes.
Turn on the grid: click on Vie $w->$ Grid.
2. Turn on snap-to-grid: click on Options $->$ Point Capturing $->$ On (Grid)

3. Draw 1 points at $(0,0)$.
a. Click on \bullet
 and thenclick at $(0,0)$ - point \mathcal{A} will be drawn. \mathcal{N} otice that it is fixed (a dependent object)!
6. Right-click and rename it O (the letter O - not zero).
4. Draw 2 points in the first quadrant-the points \mathcal{A} and \mathcal{B}.
\mathcal{N} otice that only points with whole number coefficients canbe drawn. Try moving them you will see that the y can only 'land' on grid points.
5. Draw vector
a. Select vector tool:

6. Then draw position vectors \vec{u} and \vec{v} by clicking on O and then on \mathcal{A} and again on O and then on \mathcal{B}.
6. Draw parallel lines

a. Select the parallelline tool:

6. Thenclickon $\vec{u}(\overrightarrow{O A})$ and then on \mathcal{B} to get the line parallel to \vec{u} passing through \mathcal{B}.
c. Do the same for $\vec{v}(\overrightarrow{O B})$ and \mathcal{A}.
7. Draw intersecting point
a. Select the intersecting point tool:

6. Click on one of the paralle ls and then on the other.
c. A new point will appear - it will be named C.
8. Hide objects
a. Double-click on one of the parallellines (make sure the move tool is selected before clicking). The properties box will open. Deselect 'Show object' - the line will be fidden.
6. Do the same for the other parallel line.
9. Select the line segment tool and thendraw line segments from \mathcal{A} to \mathcal{C} and from \mathcal{B} to C.
10. Draw the resultant \vec{w} vector
a. Select vector tool:

6. Thendraw position vectors \vec{w} by clicking on O and then on C.
11. Move/Change labels
a. Select the move tool:
6. Right-click on the letter \mathcal{A} and select properties. Click on the arrow in the Show label and select \mathcal{N} (ame \mathcal{F} Value

c. Do the same for \mathcal{B} and C.
d. Thenclick and drageach letter $\mathcal{A}, \mathcal{B}, \mathcal{C}$ 'outside' the parallelogram.
12. Change the colors/ Fine styles of the $\overline{A C}$ and $\overline{B C}$ and of \vec{w}
a. Right-click on the object and select properties.
6. Change color by clicking on the 6 lue rectangle and
c. change line style by clicking on the arrow to see the choices.
13. Re size your window
a. Click and drag any side of your window. Notice that it will always cut the axes from the bottom and from the right.
6. Click and drag any corner to get say:~700x630 (The reason for the se dimension is in (esson 7). Probably you will have about -7 to 15 on the x-axis and -6 to 10 on the y-axis.
c. Click O ptions $->$ Drawing Pad
d. Type-2 for x-min and 30 for $x-m a x(s e e f i g u r e ~ b e l o w-r e d ~ a r r o w s) ~$ and thenclick in the left 6 ox of the xAxis: yAxis box (blue arrow).

This relationship will change.

e. Type 1 in this $60 x$
f. Click on yAxis tab and thenenter-2 in the ymin 6 ox (green arrows).
g. Again, click in the left 6 ox of the x $\mathcal{A x i s}: y \mathcal{A x}$ is 6 ox (6 fue arrow) and enter 1. (You may have to go back and forth a couple of times to get $-2,30$ and $-2,12,7$ and 1:1.)
6. Click on Apply
14. Finally, let's write the vector-matrix notation
a. To get $\vec{u}=\binom{a_{x}}{a_{y}}\left(a_{x}\right.$ and a_{y} will be the actualcoordinates of $\left.\mathcal{A}\right)$,
click on $\mathfrak{A B C}$, select Late χ formula and copy in the following text:
" \backslash vec $\{u\}=\backslash$ left $(\backslash$ Gegin\{array\}\{c\}" $+(x(\mathcal{A}))+" \backslash \backslash "+(y(\mathcal{A}))+" \backslash$
\end\{array\} \right)" }
\mathcal{N} otice that $\chi(\mathcal{A})$ is the Geogebraformula for the χ-coordinate of the point \mathfrak{A} ! It is written $(X(\mathcal{A}))$ in a Latex formula.
(The first time I did this I thought you had to define a variable in Geogebra using the Input field, but then I saw you can just put the formula into another set of parentheses in the Latex formula.)
6. Re pe at for \vec{v} with \mathcal{B} in place of \mathcal{A}.
c. Finally, define a text \vec{w} with the following text:
$" \backslash$ vec $\{w\}=\backslash$ vec $\{u\}+\backslash v e c\{v\}=\backslash$ Left $(\backslash$ Gegin\{array $\}\{c\} "+(x(C))+" \backslash$
$"+(y(C))+" \backslash \backslash$ \end\{array\} \right)" }
15. Finally, label the vectors u, v and w.

I first drew line segments on top of the vectors, then found their midpoints (no midpoints of vectors possible..). Then I drewtextboxes using latex-"\vec\{u\}",'connected' each text6ox to the midpoints and then fid the segments and the midpoints.
16. You are done - save your file (we will need it for the next lesson).

