Geogebra Resources:
Polar Axes; Polar Coordinates

Using Geogebra-Polar Axes,
Format Painting, Auxiliary Objects
Points witf Cartesian/Polar Coordinates

Author: Linda Faflberg-Stojanovska

Screencast produced with: Camtasia Studio fttp://math247.jot.com

Key Concepts from Geogebra

1. Starter File - Polar Axes
2. Format Painting
3. Auxiliary Objects
4. Points - Cartesian and Polar

Key Concepts from Mathematics

1. none

Our goal
Open existing files, see construction protocol, use format painting, understand auxiliary objects and switch between cartesian and polar coordinates.
\mathcal{H} ints ${ }^{\circ} \mathcal{T}$ ips

1. Cartesian coordinates are separated by a comma! $\mathcal{A}=(2,2)$
2. Polar coordinates are separated by a semi-colon!
i. $\mathcal{A}=\left(r ; \theta^{\circ}\right)$ or $\mathcal{A}(r ; \theta)$ (if option is set to angles in radians).

Script-o-matic

1. Download and save the gg^{6} files: polar6.ggb and polar6_rec.ggb
2. Double-clickoneach of these files to openthem both in separate instances of Geogebra.
3. What is an Auxiliary object?
a. Look at polar6.ggb and then at polar6_rec.ggb

- Both of these files have exactly the same objects.
- But in the Alge bra windowin polar6_rec.ggb, we can only see the object point O at $(0,0)$.

6. Click Vie $w->$ Construction Protocol in each file - the lists are exactly the same. Infact, polar6_rec.ggb is constructed from polar6.ggb.

- Why aren't these objects listed in the alge bra window of polar6_rec.ggb?
c. Close the Construction Protocol in each file.
d. In polar6_rec.ggb click View ->Auxiliary objects
- You can now see all of the objects, that is
- All of the objects were 'moved' to the Auxiliary objects folder and then this folder was 'fidden'.
The purpose of the Auxiliary Objects folder is to fide 'background' objects or objects that the user does not need to see or that will only obfuscate * the goal of the construction.

[^0]Making Auxiliary objects.
$>$ Since polar axes are certainly 'background', we consider these objects the idealcandidates for explaining auxiliary objects.
$>\mathcal{F}$ irst we decide what objects we will need.
$>$ Then, when constructing we name all objects with names we won't need (or eventhink of using) in the 'real' construction.

- Since you probably will use this 'starter' file more than once, it is a good ide a to be organized $-I$ only renamed and reorganized everytfing 4-5 times () .
$>$ Then, when everything was constructed, they were moved to the Auxiliary objects folder.
- Right-clickoneachobject in the Algebra window and then select $\mathcal{A u x i l i a r y}$ object.
If you rename, redefine or edit an Auxiliary object it will move back to its rightful place under free or dependent objects. Changing properties does $\mathfrak{N O T}$ do this.

For example, I originally defined all of the points using cartesian coordinates (calculated with $\sin \theta$ and $\cos \theta)$ and then understood that I could switch to polar coordinates. But the polar numbers weren't exactly right, so I edited which caused all the points to move back to free objects and I had to move them back to auxiliary again $(3$.
$>$ Then, Gefore final save (or export) click on View->Auxiliary objects to Gide the folder and all of its objects

Let's start a new file and try this out.
4. Creating the point $O(0,0)$.
a. Double-click on your Geogebra icon to get a newfile
6. Turn on the Algebra Window: Vie w -> Algebra Window (or $\mathcal{C} t r l+\mathcal{A}$)
c. Turn on the Input field: View $->$ Input field
d. Define the point O (capital $O-n o t z e r o ~ 0) ~$

- Click down in the input window and type $O=(0,0)$. Notice that this is a free object. We do not want this*.
- Dele te \mathcal{A} by right-clicking on it and selecting delete.
e. Now turn on the Axes: View - > Axes
- Select the point icon \bullet^{A} and thenclick on $(0,0)$.
- Notice that $\mathcal{A}=(0,0)$ is a dependent object, namely the intersection of the x-axis and y-axis. This is what we want.

[^1]- Rename this point O (right-click and rename O).
- For fun, right-click on O and click on Polar Coordinates. Notice that O ($0 ; 180^{\circ}$).
There is a semi-colon between polar coordinates - that is between the radius and the angle; that is what tell us that we are using polar coordinates and not cartesian coordinates (comma). This is particularly important if we switch to radians, where there will $\mathfrak{N O T}$ be a degree sign to give us a fint!
- Right-click on O and click on Cartesian Coordinates (notice that this is a toggle function, i.e. it alternates betwe en polar and cartesian).

5. Draw a ray at 15° - or actually a line for both the rays 15° and 195°.
a. Define the point with $Z p_{1}$ with polar coordinates $\left(1 ; 15^{\circ}\right)$ that is with a radius of 1 and angle me asure 15°.

- Click in the input window and type: Zp_1=(1;15
- Thenclick on arrow to the right of the equal sign and select ${ }^{\circ}$.
- Type) and fit Enter.

6. Draw the line

- Click on the line icon and thenclick on O and then on $Z p_{1}$ (they will 'glow' when you hover over them..)
- Right-click and rename this line z_{1} by typing: zl_1
- We are using the Geogebra convention that points start witf capital letters and lines, circles, etc. start with small letters.
- We could have input: $z_{-} 1=\operatorname{Line}\left[0, Z_{-} 1\right]$. I find it easier to use icons and rename.

6ut in both cases for sure you cando whatever you want ().
6. Draw a couple of circles
a. Draw the circle of radius 1 through the point O and $Z p_{1}$.

- Click on the circle-2pts icon and thenclickon O and on Zp1.
- Right-click and rename this circle $z c_{1}$ by typing: $z c_{-} 1$.

6. Draw the circle of radius 2

- Click on the circle-radius ic on and thenclick on O and then type in 2.
- Right-click and rename this circle $z c_{2} 6 y$ typing: $z c_{-} 2$.

7. Move everytfing except O to the $\mathcal{A} u x i l i a r y ~ o b j e c t s ~ f o l d e r . ~$
a. Right-click on each of $Z p_{1}, z l_{1}, z c_{1}$, and $z c_{2}$ and select $\mathcal{A u x i l i a r y}$ object.
8. The four objects will move down.
9. Hide the labels
a. When fiding a bunch of objects:
10. Click on the show-fide labelic on AA and thenclick on the objects in either the drawing pad or the alge bra window.
11. Hide the point $Z p_{1}$
a. Right-click on Zppin the Algebra window (Don't clickin the drawing pad there are 3 objects in that place.)
$(\mathcal{B T W}$: I can't get the show-fide object ic on to work..)
10.S how the cartesian grid.
a. Click on View ->Grid
12. Look at the lines - we want that kind of lines on our polar grid.

- Click on Options \rightarrow Drawing Pad
- While we are fiere - let's turn off the numbering on the axes
- Drawing Pad

Deselect \mathcal{N} umbers (red arrow) and thenclick on y Axis tab (blue arrow) and thendeselect \mathcal{N} umbers on this sheet.

- Now click on the Grid tab (purple arrow)

The color is grey $\operatorname{RGB}(192,192,192)^{*}$ and the line style is mini-dasked. The line width is not given but it is 2 (default).

- Click on apply.

11. Paint our polar grid.
a. Set the properties on one of the objects.

- Right-click on the line or one of the circles and select properties.

[^2]- Set the color to grey, i.e. click on the grey square to open the color window and then either select a swatch or select the $\mathcal{R G B}$ tab and type in 192,192,192. Click on OX
- Set the line style. Click on the arrow and select the mini-dasked style.
- Click on Apply.

6. Paint the rest of the objects.

- Click on the copy visual style icon (a.k.a.paint icon)
- Click on the object on which you fixed the properties.
- Then, click one by one on the objects you wish to 'paint' with the same properties (sometimes it gets stuck and you fave to start again..).
12.S ave or throw this file away as you desire and then alter the starter files to fit your needs! Don't forget to fide the auxiliary folder before exporting.

[^0]: * Had to look up obfuscate myself - it means confuse, conceal, complicate - exactly right ©).

[^1]: * We can 'artificially' fix O by right-clicking, choosing properties and selecting Fix object. I don't like this because I forget and then the object appears to be free and when I can't move it, I get frustrated.

[^2]: * I personally want the cartesian graph slightly lighter than the polar graph so I move the color to $\operatorname{RGB}(220,220,220)$ - click on the gray square to open the color window and then select the RGB tab and move the sliders to the right.

